三、  蛋白质的物理和化学性质

1、呈色反应

(1)双缩脲反应(Biuret Reaction)

  蛋白质在碱性溶液中与硫酸铜作用呈现紫红色,称双缩脲反应。凡分子中含有两个以上-CO-NH-键的化合物都呈此反应,蛋白质分子中的氨基酸是以肽键相连,因此,所有蛋白质都能与双缩脲试剂发生反应。

(2) 茚三酮反应(Ninhydrin Reaction)

α-氨基酸与水合茚三酮(苯丙环三酮戊烃)作用时,产生蓝色反应,由于蛋白质是由许多α-氨基酸组成的,所以也呈此颜色反应。

(3)米伦反应(Millon Reaction)

蛋白质溶液中加入米伦试剂(亚硝酸汞、硝酸汞及硝酸的混和液),蛋白质首先沉淀,加热则变为红色沉淀,此为酪氨酸的酚核所特有的反应,因此含有酪氨酸的蛋白质均呈米伦反应。

(4) 黄蛋白反应

蛋白质遇浓硝酸会变黄,这一反应为苯丙氨酸、酪氨酸、色氨酸等含苯环的氨基酸所特有。

 

  这些反应都是蛋白质中各种氨基酸侧链的反应,这些呈色反应被广泛应用于定性和定量地测定蛋白质。

2. 水合作用(hydration)

  蛋白质中有许多极性基团,它们能与水分子形成氢链,从而使蛋白质成为高度水化的分子。这些水也就成为结合水。

溶液的PH值对蛋白质的水化作用有显著影响,在等电点时,整个蛋白质分子呈电中性,水化作用最弱,因而蛋白质的溶解度最小。

蛋白质的水合作用很重要,肉制品加工的重要指标“持水能力”就取决于蛋白质水合能力的强弱。

3.沉淀性

蛋白质溶液相当稳定,经长时间的搁置也不会发生沉淀,这在很大程度上是由于蛋白质的水化作用,所以要破坏蛋白质的稳定性使其沉淀,就必须去除蛋白质分子表面的水化层。在生产上,使蛋白质溶液沉淀的常用方法是加入硫酸铵,氯化钠等盐,因为(NH42SO4 是强电解质,它的更强的水化作用能剥去蛋白质表面的水层,而使蛋白质沉淀下来,这就称为盐析。提取酶制剂时常用此法。

4.变性作用(denaturation)

当蛋白质受到热或受到其它物理及化学作用时,其特有的结构会发生变化,使其性质也随之发生改变,如溶解度降低,对酶水解的敏感度提高,失去生理活性等,这种现象称为变性作用。变性并不是蛋白质发生分解,而仅仅是蛋白质的二四级结构发生变化。引起蛋白质变性的条件若延续时间不长或条件不太强烈,蛋白质变性就成为不可逆,一般可逆变性只涉及蛋白质的三、四级结构,而不可逆变性则连二级结构也发生了变化。

食品在加工贮藏过程中,热处理和冷藏是最常用的加工和保藏方法。因此必须注意在热加工过程中产生的不同程度变性,以及温度效应与每种蛋白变性的关系,一旦变性就会对蛋白质在食品中的功能特性和生物活性带来影响,有的是需宜的,有的则是不需宜的。

研究蛋白质变性的方法很多,通常是采用测定蛋白质的超离心沉降特征、粘度、电场中的迁移(电泳)、旋光性、圆二色性(CD)、X射线衍射、紫外差示光谱和红外光谱分析、热力学性质、生物或免疫性质、酶活力及某些功能基团的反应特性等检查蛋白质变性。近期研究表明,核磁共振波谱分析(1H谱)和激光扫描共聚焦显微技术,能够清楚观察到蛋白质变性时的结构和三维立体形貌变化。

(1)热致变性

    蛋清在加热时凝固,瘦肉在烹调时收缩变硬等都是蛋白的热变性作用引起的。蛋白质的热变性作用在食品工业中得到了广泛应用,蛋白质受热变性后对酶水解的敏感度提高,所以,我们不吃生肉而吃熟肉,消化率更高,热力杀菌也是利用了蛋白质的变性。

通常认为,温度越低,蛋白质越稳定。然而实际并非总是如此。对于那些主要以疏水相互作用稳定的蛋白质,在室温下比冻结温度时更稳定。如肌红蛋白和T4噬菌体突变株溶菌酶最稳定的温度,分别为30℃和12.5℃,低于或高于此温度二者的稳定性均下降。氨基酸的组成影响蛋白质的热稳定性,含有较多疏水氨基酸残基(尤其是缬氨酸,异亮氨酸、亮氨酸和苯丙氨酸)的蛋白质,对热的稳定性高于亲水性较强的蛋白质。蛋白质的立体结构同样影响其热稳定性。单体球状蛋白在大多数情况下热变性是可逆的,水是极性很强的物质,对蛋白质的氢键相互作用有很大影响,因此水能促进蛋白质的热变性。干蛋白粉似乎是很稳定的。在蛋白质水溶液中添加盐和糖可提高其热稳定性。

(2) 酸碱的作用

酸或碱也能引起蛋白质的变性,水果罐头杀菌所采用的温度一般较蔬菜罐头来得低,这和水果罐头中含有的有机酸较多,加热时容易引起细菌蛋白质变性有关。

(3)其它

其它引起蛋白质变性的因素,在物理上为冷冻、搅拌、高压、放射性照射、超声波等;化学上为乙醇、丙酮、生物碱、重金属盐等。

做鸡蛋糕,把蛋液搅拌至发泡、放射性照射灭菌等都是利用了蛋白质的变性。

 

返回