加热杀菌(hot sterilization)


一、微生物的耐热性
    微生物具有一定的耐热性。细菌的营养细胞及酵母菌的耐热性,因菌种不同而有较大的差异。一般病原菌(梭状芽孢杆菌属除外)的耐热性差,通过低温杀菌(例如63℃,经30分钟)就可以将其杀死。细菌的芽孢一般具有较高的耐热性,食品中肉毒梭状芽孢杆菌是非酸性罐头的主要杀菌目标,该菌孢子的耐热性较强,必须特别注意。一般霉菌及其孢子在有水分的状态下,加热至60℃,保持510分钟即可以被杀死,但在干燥状态下,其孢子的耐热性非常强。
     

二、加热杀菌的方法
    
食品的腐败常常是由于微生物和酶所致。食品通过加热杀菌和使酶失活,可久贮不坏,但必须不重复染菌,因此要在装罐装瓶密封以后灭菌,或者灭菌后在无菌条件下充填装罐。食品加热杀菌的方法很多。主要有常压杀菌(巴氏消毒法)、加压杀菌、超高温瞬时杀菌、微波杀菌、远红外线加热杀菌和欧姆杀菌等。
  

1  常压杀菌

  常压杀菌即100℃以下的杀菌操作。巴氏消毒法只能杀死微生物的营养体(包括病原菌),但不能完全灭菌。现在的常压杀菌更多采用水浴、蒸汽或热水喷淋式连续杀菌。


2、加压杀菌

  常用于肉类制品、中酸性、低酸性罐头食品的杀菌。通常的温度为100℃~121℃(绝对压力为0.2MPa),当然杀菌温度和时间随罐内物料、形态、罐形大小、灭菌要求和贮藏时间而异。在罐头行业中,常用D值和F值来表示杀菌温度和时间。
D
DRT)值:是指在一定温度下,细菌死亡90%(即活菌数减少一个对数周期)所需要的时间(分钟)。121.1℃(250℉)的DDRT)值常写作Dr。例如嗜热脂肪芽孢杆菌的Dr = 4.04.5分钟;AB型肉毒梭状芽孢杆菌的Dr = 0.10.2 分钟。
    F
值:是指在一定基质中,在121.1℃下加热杀死一定数量的微生物所需要的时间(分钟)。在罐头特别是肉罐头中常用。由于罐头种类、包装规格大小及配方的不同,F值也就不同,故生产上每种罐头都要预先进行F值测定。
    对于液体或固体混合的罐装食品,可以采用旋转式或摇动式杀菌装置。玻璃瓶罐虽然也能耐高温,但是不太适宜于压力釜高温杀菌,必须用热水浸泡蒸煮。复合薄膜包装的软罐头通常采用高压水煮杀菌。


 
3、超高温瞬时杀菌

   根据温度对细菌及食品营养成分的影响规律,热处理敏感的食品,可考虑采用超高温瞬时杀菌法,即UHTSTultra high temperature for short times)杀菌,简称UHT。该杀菌法既可达到一定的杀菌要求,又能最大程度地保持食品品质。
牛乳在高温下保持较长时间,则易发生一些不良的化学反应。如蛋白质和乳糖发生美拉德反应,使乳产生褐变现象;蛋白质分解而产生H2S的不良气味;糖类焦糖化而产生异味;乳清蛋白质变性、沉淀等。若采用超高温瞬时杀菌既能方便工艺条件,满足灭菌要求,又能减少对牛乳品质的损害。

   

4. 远红外线加热杀菌 

   远红外线是指波长为2.51000um的电磁波。食品的很多成分对310um的远红外线有强烈的吸收,因此食品往往选择这一波段的远红外线加热。远红外线加热具有热辐射率高;热损失少;加热速度快,传热效率高;食品受热均匀,不会出现局部加热过度或夹生现象;食物营养成分损失少等特点。远红外的杀菌、灭酶效果是明显的。日本的山野藤吾曾将细菌、酵母、霉菌悬浮液装入塑料袋中,进行远红外线杀菌试验,远红外照射的功率分别为6KW8KW10KW12KW,试验结果表明,照射10分钟,能使不耐热细菌全部杀死,使耐热细菌数量降低105108个数量级。照射强度越大,残活菌越少,但要达到食品保藏要求,照射功率要在12KW以上或延长照射时间。远红外加热杀菌不需经过热媒,照射到待杀菌的物品上,加热直接由表面渗透到内部,因此远红外加热已广泛应用于食品的烘烤、干燥、解冻,以及坚果类、粉状、块状、袋装食品的杀菌和灭酶。

5. 微波加热

    微波(超高频),一般是指频率在300-300000MHz的电磁波。目前915 MHz2450 MHz两个频率已广泛地应用于微波加热。915MHz,可以获得较大穿透厚度,适用于加热含水量高、厚度或体积较大的食品;对含水量低的食品宜选用2450MHz

   微波杀菌的机理是基于热效应和非热生化效应两部分。①热效应:微波作用于食品,食品表里同时吸收微波能,温度升高。污染的微生物细胞在微波场的作用下,其分子被极化并作高频振荡,产生热效应,温度的快速升高使其蛋白质结构发生变化,从而使菌体死亡。②非热生化效应:微波使微生物生命化学过程中产生大量的电子、离子,使微生物生理活性物质发生变化;电场也使细胞膜附近的电荷分布改变,导致膜功能障碍,使微生物细胞的生长受到抑制,甚至停止生长或死亡。另外,微波还可以导致细胞DNARNA分子结构中的氢键松弛、断裂和重新组合,诱发基因突变。
   
微波杀菌保藏食品是近年来在国际上发展起来的一项新技术,具有快速、节能、对食品的品质影响很小的特点。因此,能保留更多的活性物质和营养成分,适用于香菇、花粉等的干燥和灭菌。微波还可应用于肉及其制品、禽及其制品、奶及其制品、水产品、水果、蔬菜、罐头、谷物,布丁和面包等一系列产品的杀菌、灭酶保鲜和消毒,延长货架期。此外,微波应用于食品的烹调,冻鱼、冻肉的解冻,食品的脱水干燥、漂烫、焙烤以及食品的膨化等领域。
 
目前国外已出现微波牛奶消毒器,采用高温瞬时杀菌技术,在2450MHz的频率下,升至200℃,维持0.13秒,消毒奶的菌落总数和大肠菌群的指标达到消毒奶要求,而且牛奶的稳定性也有所提高。瑞士卡洛里公司研制的面包微波杀菌装置(2450MHz,80KW),辐照12分钟,温度由室温升至80℃,面包片的保鲜期由原来的3天延长至3040天而无霉菌生长。

 

6、 欧姆杀菌 

    这是一种新型的热杀菌方法。欧姆加热是利用电极,将电流直接导入食品,由食品本身介电性质所产生的热量,以达到直接杀菌的目的。一般所使用的电流是5060Hz的低频交流电。
    欧姆杀菌与传统罐装食品的杀菌相比具有不需要传热面,热量在固体产品内部产生,适合于处理含大颗粒固体产品和高粘度的物料;系统操作连续、平稳,易于自动化控制;维护费用、操作费用低等优点。
对于带颗粒(粒径小于15mm)的食品,采用欧姆加热,可使颗粒的加热速率接近液体的加热速率,获得比常规方法更快的颗粒加热速率(约12/s),缩短了加工时间,使产品品质在微生物安全性、蒸煮效果及营养成分(如维生素)保持等方面得到改善,因此该技术已成功地应用于各类含颗粒食品杀菌,如生产新鲜、味美的大颗粒产品,处理高颗粒密度、高粘度食品物料。
    欧姆杀菌装置系统主要有泵、柱式欧姆加热器、保温管、控制仪表等组成,其中最重要的是柱式欧姆加热器,是由4个以上电极室组成。物料通过欧姆加热组件时逐渐加热至所需的杀菌温度,然后依次进入保温管、冷却管(片式换热器)和贮罐,最后无菌充填包装。英国APV Baker公司已制造出工业化规模的欧姆加热设备,可使高温瞬时技术推广应用于含颗粒(粒径高达25mm)食品的加工。近年来英国、日本、法国和美国已将该技术及设备应用于低酸性食品或高酸性食品的杀菌。

、影响加热杀菌的因素 

 1.加热温度

  由于细菌芽孢具有非常强的耐热性,所以只有在100℃以上才可以杀死细菌芽孢。水在100℃沸腾,在常压下不能再提高温度,只有在高压杀菌釜中才可进行100℃以上的杀菌。

 2. 活菌浓度

  在某一特定温度下加热灭菌时,活菌浓度越高则达到一定的杀菌效果所需的时间越长。因而,在食品厂里应把原料容器、机械等仔细清洗,加工上注意卫生,以减少细菌的侵入。

 3. 细菌的履历

  形成芽孢的环境条件—温度、培养菌、水分、PH等也影响细菌的耐热性。以好气性细菌芽孢为例,在天然条件下形成的芽孢比在实验室人工培养下形成的芽孢的耐热性强,在热处理过的培养基内形成的芽孢的耐热性比在生的培养基内形成的芽孢的耐热性强。

 4. 加热环境的影响

  加热过程中环境的水分含量越低,细胞的耐热性就越强。如:用高压杀菌釜在湿热法下120℃、20-30min即可完全灭菌,而用烘箱的干热法则需160-180℃下加热3-4小时。

  加热时环境的PH在中性或近中性时,细胞的耐热性最强,当环境PH向酸性或碱性变化,则细胞的耐热性降低。如桔子类的强酸性罐头,轻微杀菌即可,而卷心菜等中性罐头则要高温长时间。

  此外,存在于环境溶液中的各种物质也影响细菌的耐热性,如蛋白质和淀粉对细菌芽孢有阻止加热致死的效果;此外,食盐、糖、磷酸盐等也有这种保护作用。在细菌芽孢的耐热性试验中,常测定细菌在中性磷酸盐缓冲液及在食品中的耐热性,这二者之比称为食物磷酸盐比,此比值大于1时,则此食物对细菌的加热死亡有保护作用。

  另外,具有杀菌作用和抑菌作用的物质与加热并用,可提高杀菌效果。

 三、热传导

  在食品加热时,热必须从四面八方传导至中心部位才能杀菌。另外,被加热物有固体、各种粘度的液体或二者混合的各种各样性状的物质,它们对热的传递有着不同的影响,灭菌时应注意到这一点。如:若罐头不是静置放在杀菌釜中,而是让其回转,边摇晃边杀菌,使内容物可很好混合,热传递显著提高,从而达到均一的杀菌效果。

 四、超高温杀菌

  一般食品在高温(120-130℃)下短时间加热比低温(115℃以下)长时间加热可保留更好的风味、色泽、组织和状态,而且对细菌芽孢的死亡也更有效果。因而各种瞬时高温法已得到普遍应用。

  马奇法是美国普遍应用的方法,适用于泵输送的液体、半流动体的食品杀菌,它是在加压状态下加热杀菌,急速冷却,在过热蒸气或无菌惰性气体中连续装罐,密封。

  对于全是液体而易腐败的牛乳,采用预先在2-6min内将牛乳预热到80-83℃,然后经加热到130-150℃的数个交换器,加热0.5-2s。

返回